

Page | 178

Chapter 15: A Deeper Look at Objects

In the Introduction to Objects schtuff in Chapter 10, I provided a very high level overview of what

objects in JavaScript are and how to think about them. That was good enough to cover the basics

and some of the built-in types, but we need to go a little deeper. In this chapter, we will make that

earlier chapter seem like the tip of a ginormous iceberg:

What we are going to do here is have a re-look at objects in greater detail and touch on the more

advanced topics such as using the Object object, creating your own custom objects, inheritance,

prototypes, and the this keyword. If all that I've listed so far makes no sense, it will after you've

reached the end of this chapter...I hope.

Onwards!

Page | 179

Meet the Object
At the very bottom of the food chain, you have the Object type that lays the groundwork for both

custom objects as well as built-in types like Function, Array, and RegExp. Pretty much everything

except null and undefined are directly related to an Object or can become one as needed.

As you saw from the introduction to objects forever ago, the functionality Object brings to the table

is pretty minimal. It allows you to specify a bunch of named key and value pairs that we lovingly call

properties. This isn't all that different from what you see in other languages with data structures like

hashtables, associative arrays, and dictionaries.

Anyway, all of this is pretty boring. Let's get to some of the more exciting stuff!

Creating Objects

The way all the cool kids are creating objects these days is by using the funny-looking (yet compact)

object initializer syntax:

var funnyGuy = {};

That's right. Instead of typing in "new Object()" like you may have seen in old-timey books, you can

just initialize your object by saying "{}". At the end of this line getting executed, you will have created

an object called funnyGuy whose type is Object. If all of this makes sense so far, great!

This funnyGuy object isn't as simple as it looks. Let's dive a little bit deeper and visualize what

exactly is going on. On the surface, you just have the funnyGuy object:

Page | 180

If you back up and look more broadly at the funnyGuy object, you'll realize that it isn't alone here.

Because it is an object, is has a connection to the main Object type that it derives from:

What this connection means is pretty significant. Let's add some more detail to what we have

provided so far:

Page | 181

The funnyGuy object has no properties defined. That makes sense given what we specified in code

(and can see in the diagram above):

var funnyGuy = {};

Our funnyGuy is simply an empty object. While there may not be any properties we defined on it,

there is a special internal property that exists called __proto__ and often represented as

[[Prototype]] that points to our Object. If your mind just melted for a second, let me slow down and

explain what is going on here.

What the [[Prototype]] property references is what is known as a prototype object:

A prototype object is the source that another object is based on. In our case, the funnyGuy object is

created in the likeness of our Object type. What this means is best highlighted by looking at an

example. We know that funnyGuy contains no properties of its own. Because it is "derived" from our

Object type, you can access any properties the Object contains through funnyGuy itself.

For example, I can do something like this:

var funnyGuy = {};

funnyGuy.toString(); // [object Object]

Page | 182

I am calling the toString() method on our funnyGuy object. Despite funnyGuy not having any

property called toString on it, what gets returned isn't an error or undefined. You actually see the

results of the toString() method having acted on our funnyGuy object.

Think about this in a different way. Your funnyGuy object is like a little kid. It doesn't have any money

of its own to buy big and expensive things. What the funnyGuy object/kid does have is a parent with a

credit card. Having access to this credit card allows the kid to go and buy things that he/she wouldn't

otherwise be able to do. The funnyGuy / Object relationship is very much like a child / parent

relationship where if the child doesn't have something, he / she can check with a parent next.

Getting back to our example and looking at it all one more time, what happened is this. Let's act this

out:

Our JavaScript engine was like, Hey, funnyGuy! I'm going to call toString() on you.

The funnyGuy object replied with a, Yo...dawg. I don't know what you are talking about.

The JavaScript engine then said, Well, I'm going to check your prototype object and see if it
contains a property called toString().

A few milliseconds later, after finding the prototype object thanks to the [[Prototype]]
property, our JavaScript engine says, Object, my old chum! Do you have a toString() property?

The Object quickly replies with a Yep. and calls the toString method.

This entire (very dramatic) interaction is part of what is known as a prototype chain. If an object

doesn't have what you are looking for, the JavaScript engine will navigate to the next object as

determined by the [[Prototype]] property and keep going until it reaches the very end. The very

end is when you try to access the [[Prototype]] property on the Object itself. You can't go any

further beyond Object, since that is as basic of a type as you can get. I highlight this in the diagrams

by having your Object's [[Prototype]] refer to null.

If you've ever heard of the term inheritance as it applies to programming before, what you've just

seen is a simple example of it!

Page | 183

Specifying Properties

I bet you didn't imagine that a single line of JavaScript would result in that much explanation, did

you? Well, the nice thing is, I front loaded a lot of conceptual data on you. Hopefully that makes

everything else that you see from here on out make a lot more sense.

Right now, we still just have an empty object:

var funnyGuy = {};

Let's specify some properties on it called firstName and lastName. As with all things in JavaScript,

you have multiple ways of defining properties on an element. The way you've seen so far is by using

the dot notation:

var funnyGuy = {};

funnyGuy.firstName = "Conan";

funnyGuy.lastName = "O'Brien";

Another approach involves using the square bracket syntax:

var funnyGuy = {};

funnyGuy["firstName"] = "Conan";

funnyGuy["lastName"] = "O'Brien";

The final approach is by extending our object initializer syntax with the literal notation for declaring

properties:

var funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien"

};

Page | 184

There is no right or wrong approach in how you want to specify properties, so be aware of all three

variants and go with one that works best for the situation you find yourself in. In general, I use...

1. The literal notation when I am specifying properties directly with a value.

2. The dot notation if I am specifying a property whose values are provided as part of an

argument or expression.

3. The square bracket notation if the property name itself is something that is part of an

argument or expression.

Regardless of which of the three approaches you used for specifying your properties, the end result is

that your funnyGuy object will have these properties (and values) defined on itself:

All of this should be straightforward. Let's just do one more thing before we move on bigger and

greener pastures. Let's create a method called getName on funnyGuy that will return the value of the

firstName and lastName properties. I will just show what this looks like using the literal notation, for

it is easy in the other approaches:

var funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien",

 getName: function () {

Page | 185

 return "Name is: " + this.firstName + " " + this.lastName;

 }

};

Our getName property's value is a function whose body simply returns a string that includes the value

of our firstName and lastName properties. To call the getName property, ahem...method, this is all

you have to do:

var funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien",

 getName: function () {

 return "Name is: " + this.firstName + " " + this.lastName;

 }

};

alert(funnyGuy.getName()); // displays "Name is Conan O'Brien"

Yep, that's all there is to declaring an object and setting properties on it. Indirectly, you learned a

whole lot about what goes on behind the scenes when a simple object is created. You'll need all of

this fancy learnin' in the next section when we kick everything up a few notches.

Creating Custom Objects
Working with the generic Object and putting properties on it serves a useful purpose, but its

awesomeness fades away really quickly when you are creating many objects that are basically the

same thing:

var funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien",

Page | 186

 getName: function () {

 return "Name is: " + this.firstName + " " + this.lastName;

 }

};

var theDude = {

 firstName: "Jeffrey",

 lastName: "Lebowski",

 getName: function () {

 return "Name is: " + this.firstName + " " + this.lastName;

 }

};

var detective = {

 firstName: "Adrian",

 lastName: "Monk",

 getName: function () {

 return "Name is: " + this.firstName + " " + this.lastName;

 }

};

Currently, if we had to visualize what he have right now, this is what you will see:

Page | 187

There is a lot of duplicated stuff here that is, frankly, unnecessary. Let's fix that using what we've

learned about inheritance and the prototype chain.

What we want to do is create an intermediate parent object that contains the properties that are

more generic and not necessary to be on the child object itself. From what we have here, the

firstName and lastName properties are going to be unique for each object we create. Because of

that, these two properties still belong on the funnyGuy, theDude, and detective objects.

Our getName property, though, does not have to be duplicated for each object. This is something we

can parcel off into a parent object that the rest of the objects can inherit from. Let's call this object

person:

Page | 188

Visually, this makes sense. How do we end up creating something like this?

Well, thinking out loud, we need to create our funnyGuy, theDude, and detective objects and ensure

the firstName and lastName properties are defined on them. That's easy. Of course, if this is all we

did, this wouldn't be adequate. The prototype for these objects will be Object, and we don't want

that. We want the person object with the getName property to be a part of our prototype chain as the

immediate parent. The way we do that is by ensuring the [[Prototype]] property on funnyGuy,

theDude, and detective references person.

In order to do this, we use the extremely awesome Object.create method. Let me quickly explain

what it does before we see it in action. The Object.create method, as its name implies, creates a

new object. As part of creating the object, it allows you to specify what your newly created object's

prototype will be. Strange how what we are wanting to do and what Object.create provides are

identical! :P

Page | 189

Let's use Object.create and the rest of the code that brings the diagram and the explanation you've

seen to life:

var person = {

 getName: function () {

 return "The name is " + this.firstName + " " + this.lastName;

 }

};

var funnyGuy = Object.create(person);

funnyGuy.firstName = "Conan";

funnyGuy.lastName = "O'Brien";

var theDude = Object.create(person,

 {

 firstName:

 {

 value: "Jeffrey"

 },

 lastName:

 {

 value: "Lebowski"

 }

 });

var detective = Object.create(person,

 {

 firstName: { value: "Adrian" },

 lastName: { value: "Monk" }

 });

Let's look at all of this code in greater detail. First, we have our person object:

var person = {

Page | 190

 getName: function () {

 return "The name is " + this.firstName + " " + this.lastName;

 }

};

There is nothing special going on here. We create a new person object whose type is Object. It's

[[Prototype]] property will point you to the Object type. It contains a method called getName that

returns some string involving this.firstName and this.lastName. We'll come back to the this

keyword shortly and how this works, so keep that one under your hat for now.

After creating our person object, this is what our world looks like right now:

In the next line, we declare our funnyGuy variable and initialize it to the object that gets returned by

Object.create:

var funnyGuy = Object.create(person);

Notice that I pass in the person object as an argument to Object.create. Like I mentioned earlier,

what this means is you create a new object with the [[Prototype]] value pointing to our person

object. This is how things look now:

Page | 191

We created our funnyGuy object with the person object set as its prototype object. In the next two

lines in our code, I define the firstName and lastName properties on the object:

var funnyGuy = Object.create(person);

funnyGuy.firstName = "Conan";

funnyGuy.lastName = "O'Brien";

This is your standard, run-of-the-mill property declaration on an object using a name and value. What

happens should be of no surprise to you:

We just created our funnyGuy object and set the firstName and lastName properties on it. We just

have our theDude and detective objects left. For these two remaining objects, I use the

Page | 192

Object.create method's second argument to pass in default values to set on our object. Let's take a

look.

Our theDude object is defined by the following chunk of code:

var theDude = Object.create(person,

 {

 firstName:

 {

 value: "Jeffrey"

 },

 lastName:

 {

 value: "Lebowski"

 }

 });

Just like with funnyGuy, I declare a variable and initialize to Object.create. The first argument is our

person object that will act as this newly created object's prototype. The second argument is me

specifying the firstName and lastName properties and their values.

You would think that you could just use the object literal notation that you saw earlier to specify the

properties:

var theDude = Object.create(person,

 {

 firstName: "Jeffrey",

 lastName: "Lebowski"

 });

Unfortunately, you can't be quite that brief. This will throw an error, for every simple property defined

via Object.create has to be an object with a value property containing the value you care about.

Page | 193

Once you've figured that out and specified the properties to set once this object has been created,

the end result is identical to what you saw earlier when creating the funnyDude object. You will have

created a theDude object whose prototype object is person with the firstName and lastName

properties storing the appropriate value.

One more object remaining! For our last detective object, just to try something similar...yet different,

I try to create a more compact way of defining the initial properties as part of creating the object via

Object.create:

var detective = Object.create(person,

 {

 firstName: { value: "Adrian" },

 lastName: { value: "Monk" }

 });

By now, you know exactly what is going on. I won't repeat myself here. At the end of all this, you will

end up with your child objects created, chained to the parent person object, which is in turn chained

to the Object:

Page | 194

At this point, if you've been following along and understand what is going on, you should be quite

impressed with yourself. Many people who work with JavaScript for a very long time have difficulty

grasping how inheritance and prototypes tie in to object creation. Wrapping your head around all of

this is quite an accomplishment.

Before you pop the champagne bottle and start celebrating, we are not done yet. There is one last

thing we need to look at before we call it a day.

The this Keyword
Let's go back to our person object and, more specifically, the getName property:

var person = {

 getName: function () {

 return "The name is " + this.firstName + " " + this.lastName;

 }

Page | 195

};

When you call getName, depending on which object you called it from, you'll see the appropriate

name returned. For example, let's say you do the following:

var funnyGuy = Object.create(person);

funnyGuy.firstName = "Conan";

funnyGuy.lastName = "O'Brien";

alert(funnyGuy.getName());

When you run this, you'll see something that looks as follows:

If you look at the getName property again, there is absolutely no existence of the firstName or

lastName properties on the person object. When a property doesn't exist, I mentioned that we walk

down the prototype chain from parent to parent. In this case, that would be Object:

Page | 196

There is no existence of the firstName or lastName properties on Object either. How is it that this

getName method happens to work and return the right values?

The answer has to do with the this keyword that precedes firstName and lastName. The this

keyword refers to the object that our getName method is bound to. That object is, in this case,

funnyGuy:

Page | 197

At the point where the getName method is evaluated and the firstName and lastName properties

have to be resolved, the lookup starts at whatever the this keyword is pointing to. In our case, the

this keyword is pointing to the funnyGuy object - an object that contains the firstName and

lastName properties!

Knowing what the this keyword refers to is something we'll devote more time to later,, but what

you've seen now will you get you pretty far.

Conclusion
Because so much fuss is made about JavaScript's object orientedness, it is only natural that a topic

that covers it would be as wide and deep as what you've seen here. A bulk of what you saw here

dealt with inheritance directly or indirectly where objects are derived and based on other objects.

Unlike other, more class-ical languages that use classes as templates for objects, JavaScript has no

such concept of a class. JavaScript uses what is known as a prototypical inheritance model. You

don't instantiate objects from a template. Instead, you create objects either from scratch or, more

commonly, by copying / cloning another object.

Page | 198

In the bazillion pages here, I tried to reinforce JavaScript's new functionality for working with objects

and extending them for your own needs. There is still more to cover, so take a break and we'll touch

upon some more interesting topics in the near future that extend what you've seen in more powerful,

expressive, and awesome ways.

Some additional resources and examples:

 Understanding “Prototypes” in JS: http://bit.ly/kirupaJSPrototypes

 A Plain English Guide to JS Prototypes: http://bit.ly/kirupaPrototypesGuide

 How does JavaScript “prototype” work?: http://bit.ly/kirupaPrototypeWork

